Вильгельм конрад рентген, немецкий физик

Съёмка работы сердца и пищеварительной системы с помощью рентгеновских лучей

Джон Макинтайр

После открытия Рентгена ситуация начала развиваться очень быстро. Почти сразу же учёные объединили рентгеновские лучи с кинематографом и начали фиксировать движущиеся объекты. Первым в этом деле был Джон Макинтайр, хирург из Королевской больницы города Глазго. Макинтайр уже создал первое в мире рентгеновское отделение, и позже именно в его отделении впервые обнаружат камни в почках пациента.

А в 1897-м году Макинтайр представил Лондонскому королевскому обществу короткометражный фильм. Это был рентген лягушачьей лапки. Лапку Макинтайр взял потому, что для того, чтобы «просветить» её, требовалось гораздо меньше энергии, чем для «просвечивания» человеческой ноги. Позже он снял бьющееся человеческое сердце. Кроме того, он давал пациенту висмут и снимал его пищеварительную систему для того, чтобы увидеть, как происходит усвоение висмута.

Сегодня эти фильмы называются «рентгеноскопия». Они используются для того, чтобы снять размещение катетеров в сердце, снять работу пищеварительной и мочевыделительной систем и для других медицинских процедур. В 2013-м году в одной только Великобритании было проведено свыше 1,3 млн рентгеноскопических процедур.

Обнаружение феномена

После назначения на пост ректора Рентген Вильгельм принялся за экспериментальные исследования электрического разряда в вакуумных стеклянных трубках. В начале ноября 1895 г. он работал в лаборатории и изучал катодные лучи. Ближе к полуночи, чувствуя усталость, Рентген собрался уже уходить. Оглядев помещение, он выключил свет и уже почти закрыл дверь, как вдруг увидел в темноте светящееся пятно. Это был свет от экрана из синеродистого бария. Ученый задался вопросом о том, как это получилось. Электрический свет не давал такого свечения, солнце уже давно село, катодная трубка была выключена, более того, прикрыта картонным черным чехлом. Ученый задумался. Он еще раз посмотрел на трубку. Оказалось, она была включена. Нащупав рубильник, он выключил ее. Свечение исчезло. Рентген включил рубильник. Свечение появилось. Так он установил, что излучение исходит от трубки. Непонятно было, каким образом оно стало видимым. Ведь трубка была накрыта. Обнаруженный феномен Рентген Вильгельм назвал Х-лучами. Оставив картонный чехол на трубке, он стал перемещаться по лаборатории. Оказалось, что 1.5-2 метра для обнаруженного излучения не преграда. Оно легко проникает через станиоль, стекло, книгу. Когда же рука исследователя оказалась на пути излучения, он увидел очертание костей своей кисти. Рентген бросился к шкафу с фотопластинками. Он хотел закрепить увиденное на снимке. В ходе дальнейших исследований Рентген обнаруживает, что излучение засвечивает пластинку, оно не расходится сферически, а имеет определенное направление. Только к утру ученый вернулся домой. Следующие 50 дней велась напряженная работа. Он мог бы сразу предать гласности свое открытие. Однако ученый считал, что большее впечатление произведет сообщение, содержащее сведения и о природе излучения. Поэтому он хотел сначала изучить свойства лучей.

Сложности исследования

Рентгену не удавалось обнаружить отражения или преломления лучей. Но он установил, что, если отсутствует правильное отражение, все же разные материалы относительно свечения ведут себя аналогично мутным средам, реагирующим на свет. Ученый, таким образом, смог определить факт рассеяния лучей веществом. Но все попытки выявить интерференцию давали отрицательный результат. Аналогичным образом обстояло дело и с исследованием отклонения излучения магнитным полем. По полученным результатам ученый сделал вывод, что свечение не идентично катодному. Но при этом излучение возбуждается им в стеклянных стенках трубки.

Скромный гений

Рентген не был сторонником популяризации своего открытия, тем не менее известие об обнаружении лучей очень скоро просочилось в прессу. Журналисты многих изданий опубликовали сообщение о «сенсационном открытии», сопровождая статьи фотографиями Рентгена. Особый акцент журналисты делали на том, что рентгеновские лучи открывают новые возможности в ­фотографии.

Не обошлось и без курьезов. Одна фирма организовала выпуск специального белья, которое, как гласила реклама, было способно защитить от Х-лучей, а другая объявила о появлении кошельков с тем же ­свойством.

Рентгену начали поступать предложения о покупке прав на использование Х-лучей, однако исследователь отказался патентовать результаты экспериментов. Именно это позволило множеству ученых во всем мире продолжать изучение свойств рентгеновских лучей и поиск их практического ­применения.

Х-лучам Вильгельм Рентген посвятил чуть более года работы. Полученные результаты он опубликовал в трех статьях. Более десяти лет физики не могли дополнить результаты Рентгена какой‑либо новой ­информацией.

Сам же автор довольно быстро потерял интерес к Х-лучам, а шумиху вокруг открытия считал необоснованной. В архивных записях сохранилось письмо Рентгена своему помощнику, в котором он жалуется, что ажиотаж, поднятый учеными и журналистами, лишь мешает ему ­работать.

В 1901 году Вильгельм Рентген получил Нобелевскую премию по физике, став одним из первых ее ­лауреатов.

Специальные рентгеновские аппараты позволяют археологам обнаруживать и изучать предметы под толщей земли или грудой камней. Компьютерная программа создает трехмерное изображение находки, что существенно упрощает работу ­археологов.

Память

Памятник Вильгельму Конраду Рентгену в Санкт-Петербурге, ул. Рентгена, д. 8.

В. Рентген на почтовой марке Албании. 2001

Один из первых памятников Вильгельму Рентгену был установлен 29 января 1920 года в Петрограде (временный бюст из цемента, постоянный из бронзы был открыт 17 февраля 1928 года) перед зданием Центрального научно-исследовательского рентгено-радиологического института (в настоящее время в этом здании находится кафедра рентгенологии Санкт-Петербургского государственного медицинского университета им. академика И. П. Павлова).

В 1923 году, после смерти Вильгельма Рентгена, его именем была названа улица в Петрограде.

В честь учёного названа внесистемная единица экспозиционной дозы фотонного ионизирующего излучения рентген (1928 г.) и искусственный химический элемент рентгений с порядковым номером 111 (2004 г.).

В 1964 Международный астрономический союз присвоил имя Вильгельма Рентгена кратеру на обратной стороне Луны.

На многих языках мира (в частности, на русском, немецком, голландском, финском, датском, венгерском, сербском…) излучение, открытое Рентгеном, называется рентгеновским или просто рентгеном. Названия научных дисциплин и методов, связанных с использованием этого излучения, также производятся от имени Рентгена: рентгенология, рентгеновская астрономия, рентгенография, рентген-дифракционный анализ и т. д.

Описание свойств

В рамках исследования один из ключевых вопросов, которые ставил Рентген, касался природы новых лучей. В ходе экспериментов он установил, что они не являются катодными. Учитывая их интенсивное химическое воздействие и свечение, ученый предположил, что это разновидность ультрафиолетового света. Но в таком случае возникают некоторые неясности. В частности, если Х-лучи относятся к ультрафиолетовому свету, то они должны обладать рядом свойств:

  1. Не поляризоваться.
  2. При переходе в воду, алюминий, сероуглерод, каменную соль, цинк, стекло и прочие материалы из воздуха не испытывать заметного преломления.
  3. Не иметь сколько-нибудь заметного отражения от этих тел.

Кроме этого, их поглощение не должно зависеть ни от каких свойств материала, кроме его плотности. Основываясь на результатах исследований, таким образом, нужно было принять, что эти УФ-лучи ведут себя несколько иначе, чем уже известные инфракрасные и ультрафиолетовые. Но ученый не мог этого сделать и продолжил поиск объяснения.

Первая магнитно-резонансная томография

При магнитно-резонансной томографии машина создаёт статическое магнитное поле, которое выстраивает все протоны в теле пациента в одном направлении. Затем короткие всплески радиоволн смещают эти протоны, и как только радиоволны отключаются, компьютер измеряет время, которое потребовалось для того, чтобы перестроить протоны. После чего компьютер использует эти измерения для того, чтобы реконструировать образ тела пациента.

Реймонд Дамадьян

Может показаться, что машины для компьютерной томографии (КТ) и магнитно-резонансной томографии (МРТ) очень похожи, однако они разные. КТ использует потенциально опасную радиацию, тогда как МРТ этого не делает. Кроме того, МРТ показывает органы и мягкие ткани намного лучше, чем КТ. МРТ используется тогда, когда врач хочет видеть состояние спинного мозга, связок и сухожилий. С другой стороны, КТ даёт возможность лучше рассмотреть повреждения позвоночника и костей.

Первый МРТ-сканер тела придумал физик Реймонд Дамадьян в 1969-м году. В 1971-м году он впервые опубликовал свою теорию об этом устройстве в журнале Science Magazine. В марте 1972-го года Дамадьян запатентовал своё изобретение. А 3 июля 1977-го года было проведено первое МРТ-сканирование человека.

Снимок груди Ларри Минкоффа

Поскольку ни один из его сотрудников не хотел лезть в новый сканер, Дамадьян полез туда сам. Когда ничего не сработало, сотрудники предположили, что их начальник был слишком большим. Один из присутствующих аспирантов, Ларри Минкофф был стройнее и вызывался попробовать. На картинке выше вы видите снимок груди Минкоффа.

Научные достижения

Перед открытием нового вида излучения в 1985 Вильгельм Рентген исследовал эффекты катодных лучей. Эксперименты заключались в прохождении электрического тока по разрядной трубке через газы при низком давлении. Рентген выяснил, что неизвестное излучение появляется при воздействии катодных лучей на объект материи. Ученый назвал явление Х-излучением, т.е. неизвестным.

Длина волны рентгеновского луча 0,005 — 100 нанометра, частота макс. 6·1019, мин. 2·1015 Гц — это между частотами γ-излучения и уф-излучения. С помощью рентгеновских лучей, благодаря особенности их поглощения различными средами (и органическими тканями), получают картину внутренней структуры объекта в медицине и промышленности.

Открытие Рентгена стало революционным для профессии врача, оно сформировало базу радиологической диагностики. Первая в истории Нобелевская премия ученому-физику была вручена заочно в 1901. Колоссальная будущая польза открытых Рентгеном лучей получила должное признание.

Научные интересы Рентгена также распространялись на электрические свойства кварца; изменение плоскостей поляризационного света под электромагнитным излучением; натяжение поверхностных сред и многое другое.

Рентген исследовал особенности газов, жидкостей, электромагнитных явлений, кристаллов. Им открыта взаимосвязь между оптическими и электрическими процессами в кристаллах. Он представлял школу экспериментальной физики и был гениальным и трудолюбивым экспериментатором.

Использование рентгеновских лучей на заре XX века

В начале XX века еще не было известно о последствиях бесконтрольного применения Х-лучей. Вдохновившись идеями Рентгена, другой известный физик Томас Эдисон пытается сконструировать флюороскоп – аппарат для рентгенографии внутренних органов человека. Однако эксперименты приводят к гибели ассистента физика: за четыре года он получает слишком большую дозу облучения, испытывая на себе действие рентгеновских трубок. У человека развилась злокачественная опухоль, и спасти его не удалось.

Происходят и курьезные случаи. Однажды Рентген получает письмо от матроса с просьбой прислать ему в конверте немного чудодейственных лучей. Участвуя в сражениях, он получил пулевое ранение в грудь, но врачи не могут извлечь пулю, не зная точное ее местонахождение.

А владельцы одного из магазинов модной обуви закупили флюороскоп, чтобы по рентгеновским снимкам ног клиенток было удобнее подбирать туфли. Использование лучей непрофессионалами приводит к тому, что покупатели получают огромную дозу облучения, поражения кожи.

В Англии выходит реклама одежды, якобы предохраняющего от рентгеновского облучения, а в США даже издают закон, воспрещающий использовать рентгеновские лучи в театральных биноклях.

Применение изобретения в наше время

Сейчас мы чаще пишем фамилию ученого-физика с маленькой буквы, ведь давно уже это слово стало нарицательным для обозначения аппарата, лучей и самого метода диагностики, широко применяемого в медицине. От его фамилии образовались такие слова, как рентгеноскопия, рентгенограмма, рентгенология, рентгеновский и многие другие.

И спектр применения открытых в конце двадцатого века удивительных лучей теперь не исчерпывается только медициной. Их используют и в создании сверхточных микроскопов и телескопов, позволяющих как разглядеть атомы, так и исследовать неведомые пространства космоса. Рентгеноструктурный и рентгеноспектральный анализ дает возможность изучать строение кристаллов и структуру вещества. Дефектоскопия, выявляющая скрытые пустоты в огромных по объему отлитых деталях, также использует технологии рентген-излучения.

Так открытие, сделанное более 120 лет назад, продолжает активно использоваться в науке и технике, приносить пользу людям.

Биография

Вильгельм Конрад Рентген увидел свет в 1845, 27 марта, на северо-западе Германии в Леннепе(поглощен Ремшайдом).

Семья состояла из Вильгельма, его отца — успешного торговца текстилем Фридриха Конрада и матери, Шарлотты Констанцы Рентген. В 1863 юношу исключили из техшколы в Утрехте из-за принципиального отказа назвать создателя обидного рисунка про педагога. Рентген был вольнопосещающим в Утрехтском университете. В 1865 он поступил в Цюрихский политехнический институт. После перехода в технологический университет в Цюрихе Рентген в 1869 защитил диссертацию по физике. Вместе со своим руководителем А. Кундтом молодой ученый в 1874 устроился в Страсбургский университет лектором. В 1875 ему присвоена профессорская степень по физике университета Хоэнхайм. 12 лет с 1888 Рентген работал профессором на кафедре физики Вюрцбургского университета, в 1894 став его ректором.

20 лет (по 1920) ученый посвятил университету в Мюнхене. Первой его научной работой была статья об удельной теплоемкости смеси газов. Позже вышли публикации о взаимозависимости давления и степени преломления проходящего через магнитное поле поляризационного света; теплопроводности кристаллов.

Ученый членствовал в Немецком физическом обществе с 1919.

19 января 1872 Анна Берта Людвиг, дочь владельца пансиона, которую Вильгельм встретил в Цюрихе, стала его женой.

В. К. Рентген скончался в Мюнхене в 1923, 10 февраля, в 77-летнем возрасте от рака кишечника

Полагают, что рентгеновские лучи, имеющие непродолжительное воздействие, не могли стать причиной смерти ученого, принимавшего необходимые меры предосторожности. Рентген за несколько лет до смерти пожертвовал свое состояние стране

Личная и профессиональная переписка по завещанию ученого была уничтожена. Похоронен Вильгельм Рентген в Гиссене на родительском семейном кладбище.

Гиперфонография

Одним из недостатков рентгеновской технологии является то, что она позволяет увидеть только образы плотных анатомических структур, таких, как кости или инородные тела (например, пули). Другим недостатком является то, что излучение опасно, и оно вполне может убить ребёнка в утробе матери. Так что медицинскому миру был необходим безопасный способ отображения менее плотных структур тела. Решение пришло после крушения «Титаника» в 1912-м году.

Реджинальд Фессенден

Чтобы лучше обнаруживать айсберги, Реджинальд Фессенден запатентовал устройство, испускающее направленные звуковые волны и фиксирующее их эхо, отражённое от различных удалённых объектов. Его сонар был способен обнаруживать айсберги на расстоянии в двух километров.

В то же самое время разразилась Первая мировая война, и немецкие подводные лодки начали угрожать транспортным судам союзников. Физик Поль Ланжевен разработал гидрофон, который также использовал звуковые волны для обнаружения немецких субмарин. 23 апреля 1916-го года была потоплена немецкая лодка US-3. Это была первая лодка, обнаруженная с помощью гидрофона. После войны технология гидрофона использовалась для обнаружения дефектов в металлах.

Карл Дуссик

В конце 1930-х годов немецкий невропатолог и психиатр Карл Дуссик считал, что с помощью звука можно заглянуть в мозг и посмотреть на другие части тела, которые не видны в рентгеновских лучах. Дуссик первым начал использовать звук в целях диагностики. Большую часть своей работы он проделал в Австрии. Позднее он расширил и дополнил свои исследования, и тогда мир впервые услышал слово «гиперфонография».

А через десять лет врач-акушер из Шотландии по имени Ян Дональд позаимствовал промышленный ультразвуковой аппарат и использовал его для изучения различных опухолей. Вскоре Дональд начал успешно использовать эту машину для обнаружения злокачественных опухолей и для контроля состояния плода в утробе матери.

Первая компьютерная томография

Одним из ограничений рентгеновских снимков является то, что на снимке появляется всё, что находится между рентгеновской трубкой и самим снимком. В итоге всякие патологии, такие как опухоли, могут быть скрыты тканями, органами и костями, находящимися выше или ниже.

В 1930-х годах начался расцвет томографии. Это был рентген определённых уровней тела, а всё, что находилось выше или ниже необходимой плоскости, на снимке выглядело размытым. Делалось это путём перемещения рентгеновской трубки в ходе съёмки. Трубка могла перемещаться в трёх плоскостях человеческого тела: саггитальной (слева направо), корональной (спереди назад), и осевой, она же плоскость поперечного сечения (от ног к голове).

Годфри Хаунсфилд

А в 1967-м году учёный из EMI по имени Годфри Хаунсфилд изобрёл осевой томограф. EMI также является звукозаписывающей компанией, которая продала 200 млн записей группы «The Beatles», так что она использовала свои средства для того, чтобы финансировать Хаунсфилда в течение четырёх лет. Именно столько ему потребовалось для того, чтобы создать прототип аппарата. В его сканере вместо плёнки использовались датчики, а пациент просто проезжал между трубок и сенсоров с заданной скоростью. После чего компьютер реконструировал анатомическое строение пациента. Сегодня это называется просто: компьютерная томография. 1 октября 1971-го года Хаунсфилд впервые использовал собственное изобретение для обнаружения опухоли в мозгу женщины.

Преподавательская деятельность

Успешно защитив диссертацию, Рентген Вильгельм становится ассистентом университета в Цюрихе, а впоследствии в Гиссене. С 1871 по 1873 г. он работает в Вюрцбурге. Спустя время вместе с Августом Адольфом (его профессором) переходит в Страсбургский университет. Здесь Рентген работал в течение пяти лет лектором. В 1876 г. он стал профессором. В 1879 г. его назначают на кафедру физики в Гиссенском университете. Впоследствии он стал её руководителем. В 1888 г. Вильгельм возглавил кафедру университета Вюрцбурга. В 1894 г. он стал ректором. Последним местом работы была кафедра физики Мюнхенского университета. Достигнув возраста, предусмотренного в правилах, он передал руководство В. Вину. Однако продолжал работу на кафедре до конца жизни. Скончался великий физик Вильгельм Рентген в 1923 г., 10 февраля, от рака. Его похоронили в Гиссене.

Историяс изюминкой

Шел 1886 год. Граф Михаил Воронцов из ревности выстрелил в свою жену из дробовика. В тяжелом состоянии с гнойным воспалением женщина была доставлена в больницу Кронштадта. Несмотря на то что ее лечением занимались ведущие врачи, состояние больной только ухудшалось. Обнаружить все инородные тела, вызывавшие воспаление, специалистам не ­удавалось.Раскаявшийся граф вспомнил, как в одном из периодических изданий он прочел статью об открытии немецкого ученого Рентгена. Там же было описание прибора для рентгенодиагностики. Сконструировать прибор предложили профессору Александру Попову (тому самому изобретателю радио). Аппарат был создан в кратчайшие сроки. С его помощью Попов получил снимок локализации дроби в теле пациентки. В отличие от современных приборов, позволяющих получать снимки за считанные минуты, экспозиция заняла не менее часа. Тем не менее инородные тела были благополучно извлечены, и графиня пошла на ­поправку.

Рентгеновские лучи быстро нашли широкое применение в самых разных областях. В одном из своих сообщений сам Рентген представил фотографию заряженного ружья. На снимке четко видны дефекты на внутренней поверхности двустволки. Лучи стали использовать в криминалистике, медицине и даже в ­искусствоведении.

Вскоре рентген-кабинеты появились и в других городах России. Их стали организовывать и на военных судах — диагностика позволяла быстро находить осколки в теле раненых моряков. Один из аппаратов был установлен на крейсере ­«Аврора».Уже в 1918 году в России появилась рентгенологическая клиника, а в 1921 году в Петербурге — первый стоматологический кабинет, в котором использовалась ­рентгенодиагностика.

Бестселлер

Ученый задержался в лаборатории еще на несколько часов. Он не смог обнаружить никаких признаков преломления или отражения странного излучения. Опыты по преломлению рентгеновских лучей лишь через несколько лет удалось поставить другому немецкому физику — Максу фон ­Лауэ.

Некоторые предметы ослабляли поток излучения, но ни один не смог полностью задержать его. Рентген назвал свое открытие Х-лучами. Попросту потому, что до конца не понял его ­природу.

Экраны, покрытые платиносинеродистым барием, немецкие физики использовали в экспериментах с катодными трубками для изучения невидимой части спектра электромагнитного излучения. Экран ставили на пути лучевого пучка, надеясь обнаружить частицы с разными свойствами: отражающиеся от экрана, проникающие сквозь и задерживаемые ­экраном.

Сейчас хорошо известно, что рентгеновские лучи являются электромагнитными колебаниями с высокой частотой и маленькой длиной волны, но название Х-лучи до сих пор используют во многих ­странах.

Сейчас хорошо известно, что рентгеновские лучи являются электромагнитными колебаниями с высокой частотой и маленькой длиной волны, но название Х-лучи до сих пор используют во многих ­странах.

Почти два месяца Рентген посвятил изучению свойств неизвестных лучей, прежде чем решился объявить о своем открытии научному сообществу. Такая скрупулезность принесла ему в итоге мировую известность. Дело в том, что он был не единственным наблюдателем чудо-лучей, но другие ученые не потрудились составить столь тщательного описания, поэтому вся слава заслуженно досталась ­Рентгену.

Искусствоведам, исследовавшим полотна Леонардо да Винчи, удалось обнаружить неизвестные ранее картины знаменитого художника — под слоем краски были найдены эскизы к незаконченной картине великого ­живописца.

Рентгену удалось получить несколько четких фотоснимков, на которых были запечатлены разновесы, лежащие в закрытом ящике стола, и рука жены ученого Анны Берты. Эти фотографии он представил публике в декабре 1895 года, выступая перед Вюрцбургским физико-медицинским обществом с докладом о своем ­открытии.

Осторожный ученый (которому на тот момент было уже за пятьдесят) не спешил делиться информацией об открытии с женой и коллегами. Показательно, что ассистент Людвиг Цендер, который помогал снимать показания приборов при исследовании нового излучения, узнал об открытии Х-лучей лишь после публикации протоколов заседаний, на которых выступил ­Рентген.

Брошюра со статьей под названием «Новый вид лучей» моментально стала научным бестселлером. За несколько недель она была переиздана несколько раз, причем типографии пришлось напечатать ее не только на немецком, но и английском, французском, итальянском и русском ­языках.

Самый первый катетер

Вернер Форсман

Работая хирургом в клинике Виктории, Вернер Форсман выдвинул теорию о том, что гибкая трубка (катетер) может быть введена в пах или в руку пациента и по венам может быть доставлена непосредственно в сердечную пазуху.

Большинство экспертов в тот момент посчитало, что катетер не дойдёт до сердца таким способом, поэтому начальство в клинике Виктории отказалось давать разрешение на этот эксперимент врача. Но Форсмана это не испугало, и он вставил иглу себе в левую руку, а затем продвинул катетер по главной вене через бицепс, минуя плечо, непосредственно в сердце. Для этого потребовалось всего 60 см трубки. После этого Форсман спустился в рентгеновское отделение и сделал снимок, чтобы доказать, что катетер на самом деле дошёл до сердца. Позднее он выполнял эту процедуру на себе ещё несколько раз. К сожалению, коллеги Форсмана высмеяли его, посчитав процедуру обычным фокусом.

Обескураженный, Форсман продолжил работу, переквалифицировавшись из хирурга в уролога

Он не знал, что важность его вклада в медицину будет признана не сразу, так что был очень озадачен, когда в октябре 1956-го года у него дома зазвонил телефон, и ему сообщили, что он стал лауреатом Нобелевской премии в области медицины и физиологии. Докотор просто спросил: «За что»?

От катодных трубок к томографам

Рентген-диагностика развивалась стремительно. Уже в 1919 году аргентинский врач Карлос Хьюсер впервые провел рентгенологическое исследование кровеносных сосудов. Для того чтобы увидеть сосуды, Хьюсер внутривенно ввел контрастное вещество — йодид ­калия.

В 1927 году португальский специалист Эгаз Мониз предложил методику исследования сосудов головного мозга с помощью рентгена. Исследования Мониза и Хьюсера положили начало рентгеновской ангиографии, которая широко используется и в настоящее ­время.

Одновременно с распространением диагностики развивалась и рентгенотерапия. В 50‑х годах XX века хирурги предложили проводить операции с использованием рентгеновского ­излучения.

Активно исследовались и методы защиты. Были определены допустимые дозы излучения и разработаны правила работы. Врачей и лаборантов, занимавшихся рентгенодиагностикой, обязали носить защитные свинцовые ­фартуки.

Новый этап в использовании излучения для диагностики наступил в 1972 году, когда американский физик Аллан Кормак и британский инженер Годфри Хаунсфилд предложили метод компьютерной томографии. Они смогли измерить степень ослабления рентгеновского излучения различными по плотности органами и тканями ­организма.

Томография стала возможной благодаря компьютерным технологиям, которые позволили анализировать большие объемы данных. Первые томографы использовались только для исследования головного мозга, но вскоре появились аппараты, «сканировавшие» весь организм. За открытие Хаунсфилд и Кормак получили в 1979 году Нобелевскую премию по физиологии и ­медицине.

Лапароскопия

Хирурги на протяжении веков удаляли из животов людей самые разные вещи. И эти животы всегда были вскрыты. Это делало пациента очень восприимчивым к инфекциям, и для восстановления после операции требовалось длительное время.

Но в 1901-м году врач-гинеколог фон Отт из Петрограда представил лапароскопию — метод, при котором операция производится не через большое отверстие, а через одно или несколько маленьких отверстий или щелей. Хирург при этом смотрит прямо в живот или в грудь пациента с помощью устройства, которое с виду напоминает миниатюрный телескоп. Вместо того, чтобы использовать свои руки, хирурги используют щипцы, ножницы, зажимы и другие инструменты на очень длинных стержнях.

К сожалению, это также означает, что хирург, делающий подобные операции, должен порой принимать самые неожиданные позы, чтобы посмотреть туда, куда нужно. Один хирург однажды вспоминал, что ему пришлось лечь на бедро пациента для того, чтобы удалить его желчный пузырь. А через 2,5 часа такой операции врач был полностью измотан. Именно по этой причине лапароскопия имеет ограниченное применение.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Кадетка
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: