Евклид

Научная деятельность и открытия

Вся жизнь ученого прошла в александрийских стенах, поэтому и его научная деятельность с открытиями состоялась здесь. Образование он получил от платоновских учеников, поэтому от них же и перенял взгляды, которые и помогли ему сформировать свой класс математики и стать преподавателем.

Предшественниками Евклида были знаменитые математики Фалес с Пифагором и Аристотелем, которые сделали фундаментальные открытия в области тригонометрической науки. Но это были разрозненные части и не представляли собой одну большую логически выстроенную цепочку.

Как и современники, математик и его ученики любили систематичные и логичные знания. Именно поэтому всю свою научную деятельность Евклид бросил на систематизацию ранее полученных знаний и их дополнение. В каждой из своих книг «Начал» он дает основные понятия, использованные учеными ранее, а затем вводит основные аксиомы и постулаты геометрии, которые упростили работу его потомкам.

Так, с первой по четвертую книгу даются понятия и постулаты из трудов Пифагора и его последователей, в пятой книге учение о пропорциях, с шестой по девятую книгу знание о числах, а в последних публикации о площадях с плоскостями и пространствами (основы стереометрии), иррациональности, учении о правильных телах.

Интересно, что публикация автора дала возможность писать последующие научные работы в области математики и получать новые знания о ней.

Свои открытия ученый сделал в той же области. Он ввел понятие точки, прямой, плоскости и движения, разработал постулаты для создания определенных геометрических фигур в любой области, понятие о свете, зеркалах, преломлении световых лучей, ввел элементарную теорию музыки, создал труд касательно использования геометрии при изучении астрономии и ошибках, которые возникают при формировании геометрических доказательств.

Кроме того, математик сделал небольшие открытия в области механики и дал понятие удельному весу тел.

Влияние

В древние времена комментарии были написаны Героном Александрийским (ок. 62 г. н. э.), Паппусом Александрийским (ок. 320 г. н. э.), Проклом и Симплицием Киликийским (ок. 530 г. н. э.). Теон Александрийский (ок. 335–405 гг. до н. э.) отредактировал «Начала» Евклида, внеся текстовые изменения и некоторые дополнения; его версия быстро вытеснила другие издания, и она оставалась греческим источником для всех последующих арабских и латинских переводов до 1808 года, когда в Ватикане было обнаружено более раннее издание.

Огромное влияние этого труда на исламскую математику заметно по многочисленным переводам на арабский язык начиная с 9-го века, три из которых должны быть упомянуты: два перевода сделал аль-Хаджадж ибн Юсуф ибн Махар, первый для аббазидского халифа Харуна аль-Рашида (правил в 786–809 гг.) и для халифа аль-Магмуна (правил в 813–833 гг.); и третий — Исак ибн Шунайн (умер в 910 году), сын Шунайна ибн Искака (808–873 гг.), который был пересмотрен Тхабитом ибн Куррой (ок. 836–901 гг.), а затем Насиром аль-Дином Сусси (1201–1974 гг.). Ученый Евклид впервые стал известен в Европе благодаря латинским переводам этих версий.

Первый существующий латинский перевод «Начал» был сделан около 1120 года Аделардом Батским, который получил копию арабской версии в Испании, куда он путешествовал, будучи замаскированным под студента-мусульманина. Аделард также составил сокращенную версию и издание с комментариями, положив тем самым евклидову традицию, имеющую огромное значение, пока в период Ренессанса не обнаружили греческие рукописи. Бесспорно, лучший латинский перевод с арабского языка был сделан Жераром из Кремоны (с. 1114-87) по версии Исхак-Сабита.

Первый прямой перевод с греческого был сделан Бартоломео Замберти и опубликован в Вене на латыни в 1505 году, а первое издание греческого текста было опубликовано в Базеле в 1533 году Симоном Гринеем. Первый английский перевод книг был сделан сэром Генри Биллингсли в 1570 году. Воздействие этой деятельности на европейскую математику не может быть преувеличено; идеи и методы Кеплера, Пьера де Ферма (1601–1665 гг.), Рене Декарта (1596–1650 гг.) и Исаака Ньютона (1642 –1727 гг.) корнями уходят в «Начала» Евклида и были немыслимы без них.

Достижения Евклида

Достижения Евклида имели огромное значение для мировой истории, математики и других наук.

Он был первым, кто:

  • систематизировал известные труды предшественников в единый сборник из 13 книг,
  • создал 5 постулатов НОД и 5 аксиом в области геометрии,
  • охарактеризовал все известные геометрические фигуры, дал понятие кривым линиям, коническим сечениям и другим явлениям,
  • создал трактат по ошибкам при изучении и создании геометрических доказательств,
  • доказал практическое использовании математики при изучении звезд, небесных тел, космоса и других наук,
  • изучил свет с законами его распространения,
  • изучил зеркала и способности преломления в них световых лучей,
  • создал простейшую теорию в области музыки,
  • создал постулаты и формулы по механики и определил удельный вес тел.

Математика

Евклид отец математики. Он сформулировал теоремы по планиметрии, упростил понимание теоремы Пифагора и теоремы о сумме углов треугольника, прописал свойства правильных многоугольников и законы построения правильных пятнадцатиугольников, указал, как применима алгебры в жизни и каковы ее основные теории, вписал теорию о целом и рациональном числе, рассмотрел квадратичную иррациональность, заложил основы стереометрической науки, доказал теоремы, касающиеся площади круга с объемом шара, вывел отношение объема пирамид с конусами, призмами и цилиндрами.

Другие науки

Помимо математики, ученый работал с оптикой, астрономией, логикой и музыкой. Так, в оптике он дал сведения об оптической перспективе, зеркальных искажениях и отражениях световых лучей в зеркале.

биография

Точная дата рождения Евклида неизвестна. Исторические записи позволили определить его местонахождение где-то в 325 году до нашей эры..

По его образованию, по оценкам, имело место в Афинах, потому что работа Евклида показала, что он глубоко знал геометрию, которая была создана из школы Платона, разработанной в этом греческом городе.

Этот аргумент поддерживается до тех пор, пока не будет выведено, что Евклид, казалось, не знал работы афинского философа Аристотеля; по этой причине нельзя утверждать окончательно, что образование Евклида было в Афинах.

Преподавательская работа

В любом случае известно, что Евклид учил в Александрии, когда командовал королем Птолемеем I Сотером, который основал династию Птолемеев. Считается, что Евклид проживал в Александрии около 300 г. до н.э., и там он создал школу, посвященную преподаванию математики..

В этот период Евклид приобрел большую известность и признание благодаря своим способностям и навыкам учителя..

Анекдот, связанный с королем Птолемеем I, выглядит следующим образом: некоторые записи указывают, что этот король попросил Евклида научить его быстрому и краткому способу понимания математики, чтобы понимать и применять их.

Учитывая это, Евклид указал, что нет никаких реальных способов получить это знание. Намерение Евклида с этим двойным смыслом состояло также в том, чтобы показать царю, что, будучи не могущественным и привилегированным, может понимать математику и геометрию.

Личные характеристики

Вообще, Евклид изображался в истории как спокойный, очень добрый и скромный человек. Также сказано, что Евклид полностью понимал огромную ценность математики, и что он был убежден, что знание само по себе бесценно.

На самом деле, есть еще один анекдот об этом, который превзошел наше время благодаря доктору Хуану де Эстобео.

По-видимому, на уроке Евклида, в котором рассматривался предмет геометрии, студент спросил его, какую пользу он получит, получив эти знания. Евклид твердо ответил ему, объяснив, что знание само по себе является самым бесценным элементом, который существует.

Поскольку ученик, очевидно, не понимал и не подписывался на слова своего учителя, Евклид дал указание своему рабу дать ему несколько золотых монет, подчеркнув, что выгода от геометрии была гораздо более превосходной и глубокой, чем денежное вознаграждение..

Кроме того, математик указал, что нет необходимости получать прибыль от каждого знания, приобретенного в жизни; Сам факт получения знаний сам по себе является величайшим достижением. Это было видение Евклида в отношении математики и, в частности, геометрии.

смерть

Согласно записям в истории, Евклид умер в 265 году до нашей эры в Александрии, городе, в котором он прожил большую часть своей жизни..

Евклид и античная философия[править | править код]

Йос ван Вассенхове (Юстус из Гента). Евклид, ок. . Урбино

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (т.наз. «математические» науки) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказаельства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должны где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

Краткий обзор

Вопреки общему убеждению, «Начала» Евклида касаются не только геометрии. Это неправильное представление может быть вызвано чтением лишь Книг I-IV, не далее, которые охватывают элементарную геометрию плоскости. Евклид понимал, что построение логической и четкой геометрии (и математики) зависит от основы, которую он представил в Книге I с 23 определениями (например, «точка — это то, что не имеет части» и «линия — это длина без ширины»): пять недоказанных предположений, которые он назвал постулатами (теперь известные как аксиомы), и пять дополнительных недоказанных предположений, которые он назвал общими понятиями. Затем Книга I доказывает элементарные теоремы о треугольниках и параллелограммах и заканчивается теоремой Пифагора.

Научные труды[править]

Евклид получил научное образование от учеников Платона и был приглашён в Александрию Птолемеем, сыном Лага; здесь, в Александрии он основал школу математики. Из его сочинений дошли только «Элементы геометрии», книга под заглавием «Данные», трактата по геометрической оптике и катоптрике и часть сочинения о делении площадей многоугольников.

Математики более позднего времени Папп Александрийский и Прокл упоминают на не дошедшие до нас книги Евклида: четыре книги о конических сечениях, две книги о местах на поверхности и на три книги «Поризмы».

Наиболее знаменита книга Евклида «Элементы». Он первый дал настолько стройное, систематическое и изящное изложение геометрии прямых линий и круга, что в Англии до 20 в. при начальном обучении геометрии придерживаются изложения Евклида. Изложение «Геометрии» Евклида состоит из 13 книг, к которым присоединяют 2 книги о 5 правильных многогранниках, хотя открытие их несправедливо приписывают Гипсиклу Александрийскому (жил на 150 лет позднее Евклида). Собственно геометрия прямых линий, кругов и плоских фигур заключается в первых шести книгах, а в пяти последних книгах изучаются поверхности и тела, в 7-й, 8-й и 9-й книгах рассматриваются свойства чисел, в 10-й рассматриваются в подробности величины несоизмеримые. Под «данными» подразумеваются те величины, которые на основании теорем, доказанных в «Элементах», могут быть определены из условий задачи. Если, например, задана на плоскости определенная точка и круг определенного радиуса, центр которого имеет вполне определенное положение, то длины и направления касательных из точки к кругу суть прямые «данные». Что такое «поризмы» — точно неизвестно. Папп и Прокл, говоря о поризмах, выражаются столь неясно, что нельзя составить себе представления об этом предмете. Папп, между прочим, говорит о поризмах как о каком-то особом методе, применяемом с успехом при решении многих трудных задач. Возможно, поризмы представляют упрощенный способ вывода некоторых лемм либо представляют собой нечто подобное сокращенному методу аналитической геометрии или, может быть, нечто подобное тем методам, которые употребительны в высшей геометрии. В «Началах» Евклид описывает метрические свойства пространства, которое современная наука называет Евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения.

Прокл (410−485 гг. н. э.) рассказывает, что Птолемей I спросил Евклида, нет ли короткого пути для понимания геометрии, чем тот, который изложен в «Началах», на что Евклид ответил: «В геометрии нет царского пути».

Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы.

Написал также работы по астрономии, оптике, теории музыки.

дальнейшее чтение

  • ДеЛейси, Эстель Аллен (1963). Евклид и геометрия. Нью-Йорк: Франклин Уоттс.
  • Кнорр, Уилбур Ричард (1975). Эволюция евклидовых элементов: исследование теории несоизмеримых величин и ее значение для раннегреческой геометрии. Дордрехт, Голландия: Д. Рейдел. ISBN  978-90-277-0509-9.
  • Мюллер, Ян (1981). Философия математики и дедуктивная структура в элементах Евклида. Кембридж, Массачусетс: MIT Press. ISBN  978-0-262-13163-6.
  • Рид, Констанс (1963). Долгий путь от Евклида. Нью-Йорк: Кроуэлл.
  • Сабо, Арпад (1978). Начало греческой математики. ЯВЛЯЮСЬ. Унгар, пер. Дордрехт, Голландия: Д. Рейдел. ISBN  978-90-277-0819-9.

Биография Евклида

Евклид появился на свет около 325 г. до н. э., однако эта дата является условной. Его точное место рождения также неизвестно.

Одни биографы Евклида предполагают, что он родился в Александрии, тогда как другие – в Тире.

Детство и юность

О начальных годах жизни Евклида фактически ничего неизвестно. Согласно сохранившимся документам, основную часть взрослой жизни он провел в Дамаске.

Принято считать, что Евклид происходил из состоятельной семьи. Это объясняется тем, что он учился в афинской школе Платона, где обучаться могли себе позволить далеко не бедные люди.

Стоит заметить, что Евклид хорошо разбирался с философскими идеями Платона, во многом разделяя учения знаменитого мыслителя.

В основном о биографии Эвклида нам известно благодаря трудам Прокла, при том что он жил почти на 8 столетий позже математика. Также некоторые сведения из жизни Евклида удалось обнаружить в работах Паппы Александрийского и Иоанна Стобея.

Если доверять сведениям последних ученых, то Евклид был добрым, вежливым и целеустремленным человеком.

Поскольку данных о мужчине катастрофически мало, некоторые эксперты предполагают, что под «Евклидом» следует подразумевать группу александрийских ученых.

Другие работы

додекаэдра

В дополнение к Элементам, по крайней мере, До наших дней сохранилось пять произведений Евклида. Они следуют той же логической структуре, что и Элементы, с определениями и доказанными предложениями.

  • Данные рассматривают природу и значение «данной» информации в геометрических задачах; предмет тесно связан с первыми четырьмя книгами Элементов.
  • О разделении фигур, который сохранился лишь частично в арабском переводе, касается разделения геометрических фигур на две или более равные части или на части в заданных соотношениях. Это похоже на работу первого века нашей эры Герона Александрийского.
  • Catoptrics, которая касается математической теории зеркал, в частности изображений, сформированных в плоских и сферических вогнутых зеркалах. Однако это приписывание считается анахронизмом Дж. Дж. О’Коннором и Э. Ф. Робертсоном, которые называют Теона Александрийского более вероятным автором.
  • Феномены, трактат по сферической астрономии, сохранилось на греческом языке; он очень похож на «Движущуюся сферу» Автолика из Питана, который процветал около 310 г. до н.э.

Джозефа ДаремаОксфорде Университетский музей естественной истории

Оптика — самый ранний из сохранившихся греческих трактатов о перспективе. В своих определениях Евклид следует платонической традиции, согласно которой зрение вызывается отдельными лучами, исходящими из глаза. Одним из важных определений является четвертое: «То, что видно под большим углом, кажется больше, а под меньшим углом — меньше, в то время как предметы под равным углом кажутся равными». В следующих 36 предложениях Евклид связывает видимый размер объекта с его расстоянием от глаза и исследует видимые формы цилиндров и колбочек, если смотреть под разными углами. Предложение 45 интересно тем, что доказывает, что для любых двух неравных величин существует точка, в которой они кажутся равными. Папп считал эти результаты важными для астрономии и включил Оптику Евклида вместе с его Феноменами в Малую Астрономию, сборник небольших работ, которые должны быть изучены до Синтаксиса (Альмагеста) Клавдия Птолемея..

Утраченные работы

Другие работы достоверно приписываются Евклиду, но были утеряны.

  • Conics — это работа по коническим сечениям, которая позже была расширена Аполлонием Пергским до его знаменитой работы по этому вопросу. Вполне вероятно, что первые четыре книги творчества Аполлония исходят непосредственно от Евклида. По словам Паппа, «Аполлоний, завершив четыре книги коников Евклида и добавив четыре других, передал восемь томов коников». Коники Аполлония быстро вытеснили прежнюю работу, и ко времени Паппа работа Евклида была уже утеряна.
  • Поризмы могли быть результатом работы Евклида с коническими секциями, но точное значение названия таково. спорно.
  • Pseudaria, или Книга заблуждения, был элементарный текст об ошибке в рассуждения.
  • Поверхность Loci касается либо локусы (множества точек) на поверхности или локусов, которые были сами поверхности; В соответствии с последней интерпретацией было высказано предположение, что работа могла иметь дело с квадратичными поверхностями.
  • Некоторые работы по механике приписываются Евклиду арабскими источниками. В девяти определениях и пяти предложениях «О тяжелом и легком» содержатся аристотелевские понятия о движущихся телах и понятие удельного веса. В «На весах» теория рычага рассматривается аналогично евклидовой манере, содержащей одно определение, две аксиомы и четыре предложения. Третий фрагмент, на кругах, описываемых концами движущегося рычага, содержит четыре предложения. Эти три работы дополняют друг друга таким образом, что было высказано предположение, что они являются остатками единого трактата по механике, написанного Евклидом.

Псевдо-Евклид

Евклиду приписываются два важных трактата об античной теории музыки: «Гармоническое введение» («Гармоника») и «Деление канона» (лат. Sectio canonis). Традиция приписывать «Деление канона» Евклиду идёт ещё от Порфирия. В старинных рукописях «Гармоники» авторство приписывается Евклиду, некоему Клеониду, а также александрийскому математику Паппу. Генрих Мейбомrude (1555—1625) снабдил «Гармоническое введение» обстоятельными примечаниями, и вместе с «Делением канона» приписал их к трудам Евклида.

При последующем подробном анализе этих трактатов было определено, что первый написан в аристоксеновской традиции (например, в нём все полутоны считаются равными), а второй по стилю — явно пифагорейский (например, отрицается возможность деления тона ровно пополам). Стиль изложения «Гармонического введения» отличается догматизмом и непрерывностью, стиль «Деления канона» несколько схож с «Началами» Евклида, поскольку содержит теоремы и доказательства.

После критической публикации «Гармоники» знаменитым немецким филологом Карлом Яном (1836—1899) этот трактат стали повсеместно приписывать Клеониду и датировать II в. н.э. В русском переводе (с комментариями) его впервые издал Г. А. Иванов (Москве, 1894). «Деление канона» ныне одна часть исследователей считает аутентичным сочинением Евклида, а другая — анонимным сочинением в традициях Евклида. Последние по времени русские переводы «Деления канона» опубликованы (в версии Порфирия) В.Г.Цыпиным и (в версии Боэция) С.Н.Лебедевым. Критическое издание оригинального текста «Деления канона» выполнил в 1991 г. А.Барбера.

  • Назад

  • Вперёд

Добавить комментарий

Евклид

Евклид Родился: около 325 года до н. э.
Умер: до 265 года до н. э.

Биография

Евклид или Эвклид (др.-греч. Εὐκλείδης, от «добрая слава», время расцвета — около 300 года до н. э.) — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 в. до н. э.

Евклид — первый математик Александрийской школы. Его главная работа «Начала» (Στοιχεῖα, в латинизированной форме — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид — автор работ по астрономии, оптике, музыке и др.

Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя бы в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему три обола, раз он хочет извлекать прибыль из учёбы». Историчность рассказа сомнительна, поскольку аналогичный рассказывают о Платоне.

Некоторые современные авторы трактуют утверждение Прокла — Евклид жил во времена Птолемея I Сотера — в том смысле, что Евклид жил при дворе Птолемея и был основателем Александрийского Мусейона. Следует, однако, отметить, что это представление утвердилось в Европе в XVII веке, средневековые же авторы отождествляли Евклида с учеником Сократа философом Евклидом из Мегар.

Арабские авторы считали, что Евклид жил в Дамаске и издал там «Начала» Аполлония. Анонимная арабская рукопись XII века сообщает:

Евклид, сын Наукрата, известный под именем «Геометра», учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира…

В целом количество данных о Евклиде настолько скудно, что существует версия (правда, малораспространенная) что речь идет о коллективном псевдониме группы александрийских ученых.

Личные характеристики

Вообще Евклид изображался в истории как спокойный человек, очень добрый и скромный. Также говорят, что Евклид полностью осознавал огромную ценность математики и был убежден, что знания сами по себе бесценны.

На самом деле, есть еще один анекдот, выходящий за рамки нашего времени, благодаря доксографу Хуану де Эстобео.

Очевидно, во время урока Евклида, на котором обсуждалась тема геометрии, студент спросил его, какую пользу он получит от получения этих знаний. Евклид ответил ему твердо, объяснив, что знание само по себе является самым бесценным элементом, который существует.

Поскольку ученик, очевидно, не понимал слов своего учителя и не поддерживал их, Евклид приказал своему рабу дать ему несколько золотых монет, подчеркнув, что выгода от геометрии была гораздо более трансцендентной и глубокой, чем денежное вознаграждение.

Кроме того, математик указал, что нет необходимости извлекать выгоду из каждого знания, приобретенного в жизни; факт приобретения знаний сам по себе является величайшим приобретением. Таков был взгляд Евклида на математику и, в частности, геометрию.

Комментарии

Карл Якоби

знаменитый немецкий математик

Симеон Пуассон

французский математик

Джеймс Клерк Максвелл

английский физик и математик

Пифагор Самосский

древнегреческий математик, философ, путешественник, создатель школы пифагорейцев

Шарль Эрмит

французский математик, признанный лидер математиков Франции во второй половине XIX века

Агнер Краруп Эрланг

датский математик, статистик и инженер, основатель научного направления по изучению трафика в телекоммуникационных системах и теории массового обслуживания

Шарль Эресманн

французский математик, работавший в области дифференциальной топологии и теории категорий

Жак Эрбран

французский математик и логик

«Начала» Евклида

Основная статья: Начала Евклида

Ватиканский манускрипт, т.1, 38v — 39r. Euclid I prop. 47 (теорема Пифагора)

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Файл:Euclid (Nova Scientia).jpg

Евклид открывает врата Сада Математики. Иллюстрация из трактата Никколо Тартальи «Новая наука»

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Кадетка
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: