Редкие металлы: почему они так важны

Анализ

Анализатор благородных металлов ставит цель ответить на два основных вопроса:

  • какое сырье перед нами: чистый драгметалл либо сплав с незначительным содержанием благородного элемента;
  • какова процентная доля драгметалла в представленной для анализа лигатурной массе.

Первая проба получается качественной, вторая дает количественный результат. Они выполняются в строгой последовательности, одна за другой. После проведения качественной пробы, устанавливающей, что в сплаве действительно имеется драгоценный металл, можно переходить к определению его количества. Если при обследовании анализируемого образца путем взаимодействия с пробирной кислотой ничего не остается, то это неблагородный металл.

Установленные в ходе экспертизы результаты нашли свое отображение в пробах. Это числовая маркировка, она показывает процентное содержание драгметалла в представленном сплаве.

Кто вообще такой Менделеев?

“Трёхногий” портрет отца мировой химии

Удивительно, что именно Менделеев стал родоначальником Периодического закона, ставшего основой периодической системы химических элементов.

Ставший 17-м ребенком директора Тобольской гимназии, он не проявлял призвания к какой-либо науке вплоть до старших курсов гимназии, однажды оставшись на второй год. Со временем ему удалось подтянуться и закончить Главный педагогический институт Петербурга с золотой медалью.

Став учителем в Одессе, он проявлял множество странных, нехарактерных для интеллигента того времени привычек и увлечений. Одним из них было увлечение кожевенным делом и шитьё: Менделеев самостоятельно переплетал книги, делал чемоданы и шил одежду для себя самого.

Пороховые заводы Менделеева

В числе других его увлечений оказалось воздухоплавание, экономика и футурология. Попутно он создал основы современной метрологии, разработал первый ледокол. Занятие естественными науками приводило ученого то к созданию русского бездымного пороха, то к попытке разработки собственной теории эфира для объяснения свойств капиллярных сосудов.

Однако водка, несмотря на устоявшееся мнение, никак не связана с именем Менделеева. Водка родилась задолго до защиты диссертации «О соединении спирта с водой», посвященной на самом деле теории растворов (указал о необходимости учитывать химизм раствора), а не русскому национальному напитку.

Менделеева совершил первый метеорологический полет в России

Но все же главное его открытие — Периодический закон: сегодня его относят к одному из фундаментальных законов мироздания, поскольку она до сих по является аксиоматической, абсолютной.

Это противоречит самим законам науки. Однако, правота Менделеева подтверждается раз за разом. И многое мы видим прямо за экраном своего монитора.

Почему в таблице Мендлеева были пустые клетки?

Памятник Менделееву в Тобольске пора пополнять новыми элементами

Значимость теории Менделеева, спустя некоторое время ставшей аксиомой современной науки, проявилась довольно быстро. Дело в том, что до него элементы упорядочивали в сплошную линию.

Но уже первая версия таблицы Менделеева оставляла пустыми несколько клеток под новые элементы: пустые места должны были занять так называемые эка-элементы, похожие на соседей. Менделееву даже удалось с поразительной точностью предсказать целый ряд их физических и химических свойств.

Соответствующие экабор, экаалюминий, экасилиций, экамарганец были получены экспериментально, получив уже в наше время собственные имена скандий, галлий, германий, технеций. Практика эка-элементов сохраняется и по сей день.

Для известных в середине XIX века бериллия, индия, урана, тория, церия, титана, иттрия Менделееву пришлось исправить атомные веса, чтобы разместить их в таблице согласно химическим свойствам, на что не решился ни один другой исследователь. И это тоже оказалось верным.

Один из первых вариантов таблицы Менделеева с предсказанными элементами

Абсолютность таблицы однажды подвела исследователей: инертным газам в первое время не нашлось в ней места, поэтому их существование активно отвергалось.

В дальнейшем периодичность позволила найти класс несуществующих (или чрезвычайно редких) в природе при обычных состояниях трансурановых элементов.

Как таблицу Менделеева проверили и доделали другие

Мозли связал номер элемента в Таблице и его физические свойства

Окончательный вид подтверждения Периодического закона нашел английский физик Генри Мозли:

Закон Мозли — закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером.

Это привело к более глубокой трактовке закона, о котором Менделеев не мог даже догадываться:

️ порядковый номер элемента = мера электрического заряда атомного ядра этого элемента,
️ номер горизонтального ряда (периода) = число электронных оболочек атома,
️ номер вертикального ряда (группы) определяет квантовую структуру оболочки, что определяет сходство химических свойств.

Где можно купить или продать?

Основными лотами на рынке остаются платина и золото. Если вы представляете какую-то фирму или имеете ИП, выгоднее покупать металлы у официально зарегистрированных брокерских компаний, работающих с ведущими заводами производителями.

Какой драгметалл самый дорогой?

Если мы говорим о самых востребованных и популярных металлах, то лидирующую строчку в рейтинге цен занимают палладий, платина и золото.

Однако самым дорогим металлом на земле по праву считается калифорний.

Его добывают в процессе работы мощнейших ядерных реакторов. Цена за 1 грамм калифорния составляет 6,5 миллионов долларов. Следующий в списке дорогих металлов идет родий. Его оценивают в 225 тысяч долларов за грамм.

Как таблицу Менделеева пополнили ядерные элементы

Здесь создают новые химические элементы

Вряд ли Менделеев предполагал, как далеко зайдут его последователи в поиске продолжения таблицы: в его время элементы получали только из природных материалов — минералов, руд.

Открытие ядерной реакции позволило создать новый способ «пополнения» таблицы: расщепление урана (элемент 92) позволило создать трансурановые элементы, вместе с которыми известно 118 элементов.

Все они не существуют в природе в достаточном для поиска количестве, либо имеют слишком короткий срок жизни. Для их получения ученые сталкивают атомы разных элементов (сегодня используют комбинацию «пучок атомов»->«мишень») , что приводит к их слиянию.

Юрий Оганесян из НИЯУ МИФИ, соавтор открытия 5 трансурановых элементов

Например, для создания теннесина (номер 117 соответствует числу протонов в ядре) ученые объединили пучки кальция (20 протонов) с мишенью из беркелия (97 протонов).

Синтез кальция с калифорнием (98) позволил появиться на свет долгоживущему изотопу оганесона (118).

Основные характеристики и особенности

Итак, восемь существующих благородных металлов объединены схожими физическими и химическими свойствами, к которым, помимо устойчивости против окислительных и коррозийных процессов, относятся:

  • мягкость;
  • высокая пластичность;
  • невероятная прочность;
  • отличная теплопроводимость;
  • высокая тугоплавкость (за исключением серебра и золота);
  • хорошая тягучесть;
  • прекрасная электропроводимость.

Для сравнения в качестве наиболее яркого противоположного примера можно привести медь. Первоначальный облик изделий из этого неблагородного металла практически не уступает драгоценностям по яркому блеску и красоте. Но привлекательный внешний вид пропадает очень быстро — при контакте с воздухом элемент вступает в реакцию и начинается процесс окисления. В результате на поверхности металла образуется своеобразная пленка или, иначе говоря, налет, из-за чего изделие становится тусклым и меняет свой изначальный оттенок.

Представители драгметаллов благородной группы составляют единую категорию элементов. Но, разумеется, каждый из них имеет и собственные индивидуальные особенности.

Золото (aurum)

По-настоящему неповторимый элемент — это единственный металл из всех существующих, который в форме чистого вещества обладает столь ярким выразительным желтым окрасом. Химическая стойкость золота заметно выше, чем у его «товарищей» по благородной категории.

На вещество не способны воздействовать даже такие общеизвестные разрушители, как:

  • щелочи;
  • соли;
  • кислоты;
  • высокие температуры;
  • влага.

Серебро (argentum)

Этот светло-серый металл выделяется среди своих «одногруппников» прекрасной отражательной способностью. По весу серебро, конечно, уступает золоту. То же касается и плотности — у него она достигает всего 10,5 г/см3. Температура плавления составляет 962 градуса Цельсия.

Существует две разновидности кислот, с которыми серебро вступает в реакцию:

  • соляная;
  • плавиковая.

Устойчив против влияния влаги. Но темнеет под воздействием содержащегося в воздухе сероводорода.

Платина (platinum) и «дочерние» представители

Достойная соперница золота за звание самого тяжелого металла. Плотность платины составляет 21,5 г/см3. Это бело-серебристое блестящее вещество плавится при температуре 1773 градуса Цельсия.

Представители платиновой группы и их индивидуальные свойства:

  • Палладий (palladium). В отличие от других благородных представителей при определенных условиях это вещество серебристого цвета все же окисляется. Эти условия заключаются в нагревании в температурном диапазоне 300−860 градусов. Впрочем, если превысить верхний порог, образовавшийся оксидный налет исчезнет, а сам металл еще более посветлеет. Плотность вещества равна 12 г/см3. А плавится палладий при температуре 1554 градуса Цельсия.
  • Родий (rhodium). Вещество голубоватого окраса почти наравне с серебром обладает хорошей отражательной способностью. Твердый, но достаточно хрупкий металл. Его плотность составляет 12,4 г/см3. Температура, необходимая для плавления родия, равняется 1962 градусам Цельсия.
  • Рутений (ruthenium). Внешне почти идентичен с платиной, но по своим свойствам и характеристикам близок к родию. В частности, это касается плотности. По температуре плавления среди всех металлов благородной группы уступает только осмию и иридию. У рутения она составляет 2330 градусов Цельсия.
  • Иридий (iridium). Серо-белое вещество по своим свойствам идентично рутению и родию. Но по плотности обходит даже платину — у иридия этот параметр составляет 22,4 г/см3. По температуре плавления этот металл входит в тройку лидеров среди элементов благородной группы (вместе в рутением и осмием). Иридий плавится при 2466 градусах Цельсия. Это вещество — самый стойкий металл. На него не оказывают воздействие ни кислоты, ни соли, ни какие-либо химические элементы.
  • Осмий (osmium). Белое вещество совершенно невозможно растворить в кислоте. Это абсолютный чемпион среди благородных веществ как по тяжести и плотности, так и по температуре плавления. Последняя у осмия достигает 3035 градусов Цельсия, а плотность составляет 22,5 г/см3.

Какие металлы относятся к благородным, их свойства

Название «благородные» эта группа металлов получила благодаря особым характеристикам. В зависимости от разновидности физико-химические свойства у них могут проявляться в разной степени, но они всегда остаются уникальными.

Родий

Родий – представитель платиновой группы. Принадлежит к числу легких металлов, имеет бледно-голубой цвет. Отличается высокой степенью твердости и, вместе с тем, хрупкости.

Ценится за высокую отражательную способность, устойчивость к химическому воздействию. Окислить родий можно только горячей серной кислотой. Процесс плавления начинается при нагреве почти до 2000 °С.

Платина

Из-за белого блеска платина, открытая на рудниках Америки, изначально называлась «серебришком». Только в 1751 году платина получает статус драгметалла, а ее стоимость мгновенно обгоняет известные тогда серебро и золото. Она обладает высокой пластичностью, отлично поддается ковке (из-за чего и полюбилась ювелирам). Вместе с тем платина тверже золота, тугоплавка, устойчива к химическим воздействиям, не подвержена окислению.

Золото

Как и платина, обладает хорошей пластичностью, ковкостью, но имеет более низкие температуры плавления. Реагирует только с царской водкой, неуязвимо для щелочей, солей и кислот. В природе редко встречаются экземпляры чистого золота с выраженной желтой окраской и характерным блеском. Чаще всего старатели сталкиваются с блеклой рудой зеленого цвета.

Осмий

Самый тугоплавкий из благородных металлов. Температура плавления достигает 2700 °С. Кроме того, осмий не растворяется в кислотах. По внешним характеристикам белый и твердый. Принадлежит к группе тяжелых металлов.

Иридий

Как и осмий, относится к тяжелым металлам. Самый прочный, плотный, тугоплавкий и не растворяющийся в кислотах, серо-белого цвета. Температура плавления немного ниже, чем у осмия, и составляет 2454 °С.

Рутений

По внешним характеристикам рутений легко спутать с платиной. По температуре плавления благородный металл напоминает иридий, обладает повышенной прочностью и плотностью. Интересно, что только рутений и осмий под действием щелочи, окислителя и высоких температур образовывают растворимые в воде спеки.

Палладий

Мягкий, ковкий, белого цвета с серебристым отливом. При нагревании до 860 ° C палладий образует оксиды, но при дальнейшем повышении температуры снова становится чистым. Температура плавления составляет 1554 °С.

Серебро

Среди благородных металлов серебро отличается наименьшей плотностью и относительно низкой температурой плавления – 960 °С. Лучше всего поддается ковке, служит отличным тепло- и электропроводником. Практически не реагирует с кислотами, но темнеет под действием сероводорода, входящего в состав атмосферы.

Список полудрагоценных металлов

В ювелирном производстве и приборостроении активно используют металлы, не являющиеся по сути драгоценными, но представляющие определенную ценность. Они условно называются полудрагоценными. Среди наиболее востребованных можно выделить такие виды:

  • титан;
  • вольфрам;
  • мельхиор.

Цена на них колеблется в среднем ценовом диапазоне и не превышает 2 долларов за грамм.

Перечень драгоценных металлов

Известны следующие драгоценные металлы:

  1. Золото.
  2. Серебро.
  3. Платина.
  4. Родий.
  5. Осмий.
  6. Иридий.
  7. Рутений.
  8. Палладий.

Некоторые ученые выделяют еще один элемент, который можно отнести к благородным металлам – технеций. Однако ввиду своей радиоактивности его не включают в общую классификацию.

Каждый из материалов в природе встречается либо в виде самородков, либо в составе руды или сплавов. Месторождений благородных металлов по всей Земле не так уж много, поэтому разработка их проводится под жестким контролем тех государственных предприятий, на чьей территории они находятся.

Сферы применения

Благородные металлы нашли широкое применение в самых разных сферах. Вот только некоторые из них

Электротехника

Уникальные физико-технические характеристики в тандеме с химической и биологической инертностью позволяют создавать эффективную защиту электрических контактов от пригорания и окисления. Это делает металл безопасным и практичным при применении в электротехнической сфере.

Для создания светочувствительных элементов применяются соли серебра (хлориды и бромиды). Припои из благородных металлов востребованы при создании электротехнических устройств, к которым предъявляются повышенные требования надежности. Наиболее редкие элементы используются для создания термопар и других нагревательных элементов.

Ювелирное дело

Испокон веков благородные металлы были востребованы в ювелирной промышленности. Из них создают эксклюзивные цепочки, серьги, браслеты, кольца, кулоны, крестики, а также оправы очков, дорогие портсигары и многие другие изделия. Ювелиры высоко оценивают цвет, изысканный блеск металлов, а также их уникальные свойства.

Драгметаллы не вступают в реакцию с кожными покровами человека, поэтому они не приводят к кожным болезням и аллергическим реакциям. Допускается использование благородных металлов в качестве слоя напыления для украшений, сделанных из дешевых металлов. Такие ювелирные украшения радуют своих обладателей долгие годы и нередко передаются по наследству из поколения в поколение.

Химия

Устойчивость драгметаллов к кислотно-щелочным составам, а также каталитические параметры делают актуальным их использование в химической отрасли. Из них создают оборудование для агрессивных составов. Многие из этих металлов нашли применение в качестве катализатора при производстве бензина.

Автомобилестроение

Катализаторы используются и для создания приборов выхлопа газов. Именно поэтому благородные металлы востребованы при изготовлении автозапчастей. Они позволяют быстро и надежно нейтрализовать токсичные химические соединения. Чаще всего для этих целей берут палладий и родий.

Медицина

Биологическая и химическая инертность позволяют задействовать благородные металлы при производстве хирургических инструментов и всевозможных деталей для медоборудования. Многие металлы востребованы в протезировании и стоматологии. Ряд соединений получил распространение при изготовлении лекарственных средств в качестве составного компонента.

Наука о космосе

Драгоценные сплавы актуальны при строительстве летательных и космических аппаратов, поскольку лишь они способны обеспечить максимальную безотказность и безопасность этих систем. Лишь благородным металлом под силу справиться с нагрузками, которые космическая станция может испытать на орбите.

Стекольная промышленность

Нашли своё применение драгметаллы и в изготовлении стекла. Очень часто из них выполняют резервуары для варки стекла.

Банковская сфера

Также нельзя не упомянуть о роли благородных металлов в качестве обменной денежной меры. Золото и серебро в стародавние времена применяли для изготовления монет, хотя в наши дни серебро уже утратило свою функцию в этом обороте. И все же из золота и платины и по сей день отливают инвестиционные слитки.

Это позволяет всем желающим вкладывать свободные средства с высокой выгодой. Как показывает практика, традиционная валюта со временем обесценивается, в то время как слитки из золота неизменно остаются в цене.

Многие банковские и финансовые организации даже предлагают вкладчикам открывать особые металлические счета. Это выгодные вложения, так как в продолжительной перспективе собственники таких слитков могут получить серьезную прибыль. У металлических счетов имеется лишь один минус — это отсутствие системы страхования вклада, что может повлечь немалый риск в случае, если банк обанкротится.

Осмий и осмий-187

Осмий — природный металл. Формально его причисляют к благородным. Осмий имеет красивый серебристо-голубой оттенок. Отличается самой высокой температурой плавления. Ученые долгое время не могли выяснить, при какой температуре плавится этот металл — 3000 или 5000 градусов. Результаты сообщили, что плавить его лучше на поверхности Солнца.

Добыча осмия в природе — длительной процесс, занимающий почти год. Его стоимость на рынке составляет 10 000 долларов за 1 грамм. Однако намного дороже стоит изотоп осмия-187. Его стоимость достигает 200 000 долларов за грамм. Производство изотопа занимает около 9 месяцев. Примечательно, что применения осмию-187 пока не нашли. Но уже покупают.

Таблица Менделеева важна, но Периодический закон – ещё важнее

Менделеев смог открыть один из всеобъемлющих законов

Как ни странно, важнейшее открытие Менделеева обычно остается за кадром – Периодический закон:

Современная формулировка практически ничего не меняет, лишь дополняя исходный текст:

Периодическая система стала графическим выражением Периодического закона, который устанавливает зависимость свойств элементов от их атомного веса (атомной массы или атомного числа — числа протонов в атоме).

Современный вид таблицы Менделеева

Размещение элементов в таблице удовлетворяет одновременно 2 условиям: они

️ организованы веса атомов,
️ химические и физические свойства каждого элемента сходны с предыдущим.

Закон справедлив для всех существующих и гипотетических элементов, исключая самых первых — они просто не имеют ничего перед собой (хотя многие пытаются разместить там гипотетический «эфир», ссылаясь на самого Менделеева, хотя он таких попыток не делал).

Интересно, что в первой версии было лишь 60 элементов таблицы. Сегодня их 118, а конечно число… Теоретически оно могло бы быть бесконечным, если бы не квантовая физика, но об этом чуть позже.

Откуда появилась великая таблица Мендлеева?

Памятники Менделееву существуют во всех странах мира

К моменту появления периодической таблицы в 1869 году было открыто 63 химических элемента. Все они представлялись в виде хаотического набора, хотя попытки какого-то упорядочения совершались регулярно.

Первой известной публикацией на этот счет стал «закон триад» (1829 год) Иоганна Дёберейнера, однако он дальше понимания связи атомной массы и химических свойств элементов не продвинулся.

Позднее Александр Эмиль Шанкуртуа создал «Теллуров винт» (1862), разместив элементы на винтовой линии. Ему удалось увидеть частое циклическое повторение химических свойств по вертикали.

Самой правдоподобной стала система Юлиуса Лотара Мейера (1864), который смог составить таблицу, упорядочив элементы по свойствам и весам. Увы, он взял за основу периодичности свойств валентность, что оказалось ошибкой.

Главный конкурент, который подсказал идею: Лотар Мейер

Менделеев, по собственным словам, занимался проблемой систематизации химических элементов на протяжении 20 лет (а не спонтанно во время сна, вопреки устоявшемуся мнению), перекладывая карточки с названием и свойствами элементов в поиске нужной комбинации.

И в 1869 ему удалось найти ответ, опубликованный в статье журнала Русского химического общества «Соотношение свойств с атомным весом элементов».

Периодическая таблица Мейера довольно скудна

Чуть позже идею подхватил Мейер, опубликовав собственную работу с аналогичным результатом. Знал ли он о достижении Менделеева? Незивестно. К тому же он смог организовать лишь 28 элементов

Однако, из-за него в Европе и США Периодическая таблица Менделеева не имеет в названии имени собственного.

Тем не менее, мировое сообщество ученых трижды выдвигало Менделеева лауреатом Нобелевской премии. Увы, ему не удалось стать членом Российской академии наук, а её члены раз за разом отвергали кандидатуру.

Астат

Астат — самый редкий металл на планете, встречающийся в природных условиях. В земной коре присутствует всего 70 мг астата. Долгое время его считали галогеном (образующим соли в результате реакции с металлами). Но в 2013 году было проведено исследование. Ученые смоделировали свойства астата. Формально, он должен быть металлом, но при этом не выстраивает присущую им кристаллическую решетку. Структура астата должна быть схожа со структурой ртути, но при этом он, вероятно, в нормальных условиях будет не твердым, а жидким.

В лабораториях за все время изучения его свойств удалось получить лишь 0,05 микрограмма самого редкого металла на земле, поэтому его основные характеристики (цвет, плотность) остаются для химиков загадкой.

Астат получают путем облучения висмута с последующим отделением их друг от друга. Все изотопы этого вещества являются активными. Примечательно, что период распада астата составляет чуть больше 8 часов. Это свойство позволяет использовать его в ядерной медицине.

Карл Карлович Клаус

Карл Карлович Клаус был современником и другом основоположников русских химических школ — Н. Н. Зинина (1812—1880) и А. А. Воскресенского (1809 —1880). Наиболее плодотворная деятельность Клауса относится к периоду, когда он в течение 15 лет возглавлял кафедру химии Казанского университета. Преемником и любимым учеником Клауса был А. М. Бутлеров.

К началу тонких аналитических исследований Клауса было известно пять платиновых металлов, выделенных преимущественно английскими учёными: платина, палладий, родий, осмий и иридий. В обстановке, когда всё считалось исследованным, появление сообщения об открытии ещё одного платинового элемента, вдобавок из «глухой России», не могло быть принято иначе, как с недоверием.

Русские исследователи начали заниматься платиновыми элементами давно. За границу просочились сведения о том, что в Сибири имеются россыпи платины

Иностранцы — путешественники неоднократно обращали внимание на золотоносные пески Урала. С другой стороны, русские учёные интересовались платиновыми металлами импортного происхождения

Первая публикация о группе платинидов принадлежит харьковскому проф. Ф. Гизе. Известный учёный, почётный член Петербургской и ряда других академий А. Мусин-Пушкин был одним из пионеров исследования русской платины. Ему же принадлежит авторство приготовления новой соли платинохлористоводородной кислоты. Наиболее убедительный химический анализ загадочного сибирского белого нержавеющего металла был произведён В. В. Любарским. Всё это подготовило почву для начала промышленного освоения русской платины. В 1824 г. открылся платиновый рудник. Добыча «белого золота» стала быстро возрастать и в 1829 г. дошла до 45 пудов. К этому времени П. Г. Соболевский открыл способ приготовления ковкой платины (Волластон сделал аналогичное открытие через два года), что дало возможность в 1828 г. начать чеканку платиновых монет и медалей на Петербургском монетном дворе.

Русское платиновое сырьё исследовалось и с целью нахождения в нём новых химических начал. Дважды ошибочно объявлялось об открытии новых элементов (Варвинским и Озанном). Г. В. Озанн даже дал названия трём, якобы им открытым, элементам: плюраниум, рутениум и полониум, но затем снова повторил свои исследования и отказался от ошибочного мнения. Интересно, что два из трёх названий Озанна оказались живучими и были присвоены позже открытым элементам (Ро и Ru).

Карл Карлович Клаус

Клаус начал заниматься платинидами в Казани в 1841 г. и уже в 1844 г. имел возможность письменно доложить Петербургской АН об открытии нового элемента, названного им в честь его родины «рутением» (Ruthenia — древнее название России). Ряд последующих исследований Клауса был посвящён дальнейшей разработке вопроса и получал освещение в русских академических и некоторых зарубежных изданиях. Всего платинидам Клаус посвятил 8 печатных трудов.

Открытие нового элемента наделало много шума. Вначале к нему отнеслись так же скептически, как и к многочисленным неподтверждённым заявлениям этого рода. Ведь платиновыми элементами занимались в течение 40 лет после открытия пятого из них — осмия — крупнейшие химики мира, а тут неизвестный казанский исследователь Клаус осмеливался утверждать, что он открыл новый элемент! Проба рутения была послана в Швецию Берцелиусу. Вскоре был получен ответ, что это не новый элемент, а «проба нечистого иридия». Как будто все обстоятельства складывались не в пользу учёного. Но Клаус был выдающимся химиком-аналитиком и считал, что он не мог так грубо ошибиться. Дополнительными исследованиями Клаус доказал, что был прав именно он, а не Берцелиус, и то, что он назвал рутением, действительно представляет нечто новое среди элементов. Вскоре Берцелиус вынужден был признаться в своей ошибке. За своё открытие Клаус был удостоен Демидовской премии в 1000 рублей золотом. В лаборатории университета тщательно хранятся оригинальные препараты рутения, его соединений, другие платиновые производные, приготовленные самим Клаусом.

Открытие рутения было сделано Клаусом в лаборатории Казанского университета. По оборудованию она не уступала лучшим зарубежным лабораториям. Несомненно, такая обстановка способствовала тому, что этот университет стал колыбелью русских химических школ с мировой славой. Клаусу по праву принадлежит яркая страница в истории химии. Он оказал большое содействие возвеличению своей родины. Факт открытия нового химического элемента Клаусом ещё раз доказывает, что и в прошлом развития русской химической мысли есть великие достижения, в которых проявляется превосходство русских учёных над иностранцами.

Как понять таблицу Менделеева, если ты не шаришь?

Краткая шпаргалка к Таблице Менделеева

Периодический закон легко применять на практике. Ещё со школы мы все должны знать: натрий похож на калий, фтор похож на хлор, а золото — на серебро и медь. Следующий элемент просто как бы прибавляет к уже существующим ещё что-то.

По самой таблице так же можно узнать примерные свойства. В подгруппах сверху вниз:

️ усиливаются металлические свойства и ослабевают неметаллические (появляются свободные электроны — проводит ток);

️ возрастает атомный радиус (выше плотность/масса),

️ возрастает сила образованных элементом оснований и бескислородных кислот (действие сильнее),

️ электроотрицательность падает (хуже соединяется с другими элементами).

В периоде с увеличением порядкового номера элемента:

️ электроотрицательность возрастает (лучше образовывает соединения),

️ металлические свойства убывают, неметаллические возрастают (хуже проводит ток),

️ атомный радиус падает (хуже создает соединения).

Ещё одно свойство связано с традиционной, «короткой» формой таблицы, предложенной самим Менделеевым: если сложить её пополам, посредине IV группы, окажется, что элементы напротив друг друга могут образовывать соединения друг с другом.

Хотя на первый взгляд это не нужно в обыденности, таблица Менделеева помогает быстро понять, например: какая кислота «сильнее», что лучше проводит ток, к чему не стоит прикасаться, чем можно отравиться.

Калифорний из Калифорнии

Калифорний (Cf) на сегодняшний день имеет статус самого редкого и дорогого металла на Земле. Находится под номером 98 в таблице Менделеева. Его называют «камнем надежды». Он имеет серебристо-серый цвет и производится путем длительного облучения плутония. Сам плутоний был получен при бомбардировке урана ядрами тяжелого водорода.

Калифорний был выведен группой ученых во главе с Гленном Сиборгом в 1950 г. В природе его, естественно, не существует. Его созданием занималась команда Калифорнийского университета (откуда и получил свое название металл) города Беркли. Сегодня с ним работают лишь 2 лаборатории. Одна находится в России, другая — в США.

Калифорний является изотопом (изотопы получают искусственным путем). При этом стоимость его просто баснословна — до 10 млн. долларов за грамм. Это неудивительно, ведь мировой запас металла составляет всего 8 граммов. Ежегодно удается получить лишь 20-40 грамм калифорния.

Этот металл является радиоактивным и состоит из 17 изотопов. Самым изученным из них считается калифорний-252. Длительность его полураспада составляет целых 900 лет.

Свойства калифорния ошеломляющие. Применяется преимущественно в медицине и в области ядерной физики. Он является мощным источников нейтронов, поэтому его используют для обработки злокачественных опухолей, которых «не берет» лучевая терапия.

Он также используется для изучения космического пространства — как Луны, так и самых дальних звезд и планет. Он применим и для исследования деления ядер. Кроме этого, калифорний является незаменимым помощником во время добычи полезных ископаемых — он позволяет обнаруживать серебро и золото.

Бомбы, изготовленные с добавлением самого редкого в мире металла, считаются очень мощными. 1 грамм калифорния способен обеспечить часовую деятельность небольшого ядерного реактора.

Металлы в технике, металлы в строительстве.

цветной металлопрокат

Металлы применяются во всех отраслях промышленности  и хотя современная техника немыслима без использования не металлических материалов, всё равно металлы являются основной составляющей.    В обиходе считается, что есть чёрные металлы и цветные. К чёрным относятся железо и его сплавы.  Эти продукты являются важнейшими и основными конструкционными материалами в технике и  в промышленном производстве.  Остальные металлы относят к цветным.

Физические свойства металлов обуславливают применения их  в различных технических устройствах и оборудовании.   Металлы, обладающие высокой электропроводностью – серебро, медь, алюминий  используют в электротехнической промышленности. Лёгкие и прочные металлы  незаменимы в самолётостроении и авто строении.  Автомобили, самолёты и другая транспортная техника не мыслима без титана и алюминия.  Для улучшения потребительских свойств техники разрабатывают и применяют сплавы металлов.  В частности, дюралюминий – сплав алюминия с медью,  магнием и марганцем.  Современные самолёты на 75-80% состоят из дюралюминия.  Дюралюминий, обладающий лёгкостью алюминия и, благодаря добавкам, большой прочностью, сделал настоящею революцию в производстве самолётной технике. Строительство самолётов не обходится без других металлов и многие из них также представляют собой сплавы с улучшенными свойствам.

Чёрные металлы применяют в технике, подверженной длительным и тяжёлым нагрузкам.  Это в первую очередь железнодорожная и сельскохозяйственная техника.  Тяжёлая и постоянная нагрузка в железнодорожном транспорте требует использования самой прочных и недорогих материалов.  По этим показателям лучшим считается чугун.  Чугун используют при производстве вагонных колёс.  Чтобы повысить долговечность работы пары колесо-рельс, соприкасающиеся детали делают из металлов с различными свойствами.  Если колесо чугунное, с содержанием углерода не менее 2,14%, то рельсы – стальные с небольшим содержанием углерода, с добавками повышающими пластичность и вязкость металла.

Сельскохозяйственная техника работает не просто в полевых условиях, а в тяжёлых и напряжённых условиях.  Металлы, используемые в сельхозтехнике должны быть прочными и долговечными.  Здесь, конечно, незаменимы чугун и конструкционная сталь.

В чистом виде металлы, за исключением некоторых, в технике применяются редко.  Современная химия и металлургия делают сплавы с улучшенными, чем у основы, свойствами, а главное свойства имеют узконаправленное действие – большую прочность, лучшую защиту от коррозии, более высокую электропроводимость и т.д.

В строительстве, в подавляющем большинстве случаев , используют чёрный металл.  Несущий металлопрокат  — трубы, швеллер, балки, делают из конструкционной стали.  Этот материал применяют во всех сферах строительной индустрии.  Особую популярность, в первую очередь при строительстве малоэтажных сооружений,  приобрели в последнее время профильные трубы и оцинкованные лёгкие, тонкостенные конструкции.

Лестница из нержавеющей стали

Часто при  строительстве даже небольших объектов используют целый спектр различных материалов.  К примеру, при сооружении лестницы на металлокаркасе, сам каркас делают из конструкционной  стали.  Ограждения лестницы – из нержавеющей стали.  Стойки, опоры, столбы лестниц, а также элементы холодной ковки делают из чугуна. Крепёжные элементы лестниц защищают цинком.  Поручни и декоративные узлы лестниц хромируют и никелируют.  Как видно, даже для небольшого строения – лестница, применяют достаточно большую номенклатуру металла.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Кадетка
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: